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1 Week 5

1.1 Exercise 8.3
How long a string of random bits should be taken to be 50% sure that there are at least
32 consecutive 0s?

Solution
The number of bitstrings with no runs of P consecutive zeros is given by:

BP (z) =
1− zP

1− 2z + zP+1

We can approximate this using the transfer theorem for rational functions:

[zn]
f(z)

g(z)
∼ C βn nν−1

Where 1/β is the largest root of g(z), ν is its multiplicity, and C is given by:

C = ν
(−β)νf(1/β)

g(ν)(1/β)

For P = 32, the largest root leads to β = 1.999999999767169 (found numeri-
cally), and C = 1.0000000034924597. The probability that a random bitstring of size
n has 32 consecutive zeros is:

µ =
Cβn

2n

The minimum value of n to reach a probability µ = 0.5 therefore is:

n =

⌈
logµ/C

log β/2

⌉
n = 5954088952
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1.2 Exercise 8.14
Suppose that a monkey types randomly at a 32-key keyboard. What is the expected
number of characters typed before the monkey hits upon the phrase THE QUICK
BROWN FOX JUMPED OVER THE LAZY DOG?

Solution
First of all, we should notice that the string has length P = 44, and its autocor-

relation polynomial is just cP (z) = 1. The number of strings of size n, on a 32-key
keyboard, that does not contain out target string, is given by:

SP (z) =
cP (z)

zP + (1−Mz)cP (z)

SP (z) =
1

z44 − 32z + 1

The expected wait time of our string is given directly by SP (1/32):

SP (1/32) = 1.685× 1066

1.3 Exercise 8.57
Solve the recurrence for pN given in the proof of Theorem 8.9, to within the oscillating
term: pN = 1

2N

∑
k

(
N
k

)
pk for N > 1 with p0 = 0 and p1 = 1.

Solution
First we add the initial conditions, and take the exponential generating function:

pn =
1

2n

∑
k

(
n

k

)
pk +

1

2
[n == 1]

∑
n

pn
zn

n!
=
∑
n

1

2n

∑
k

(
n

k

)
pk
zn

n!
+

1

2
z

P (z) =
∑
n

∑
k

(
n

k

)
pk

(z/2)n

n!
+
z

2

The first term is the binomial sum on z/2:

P (z) =
∑
n

∑
k

(
n

k

)
pk

(z/2)n

n!
+
z

2

P (z) = ez/2P
(z

2

)
+
z

2
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Let’s expand some terms:

P (z) = ez/2P
(z

2

)
+

1

2
z

P (z) = e3z/4P
(z

4

)
+ ez/2

1

4
z +

1

2
z

P (z) = e7z/8P
(z

8

)
+ e3z/4

1

8
z + ez/2

1

4
z +

1

2
z

This suggests that P (z) is:

P (z) =
∑
n≥1

exp

(
2n−1 − 1

2n−1
z

)
z

2n

We can prove this is true by substituting:

P (z) =
∑
n≥1

exp

(
2n−1 − 1

2n−1
z

)
z

2n

P (z) = e0
z

2
+
∑
n≥2

exp

(
2n−1 − 1

2n−1
z

)
z

2n

P (z) =
z

2
+
∑
k+1≥2

exp

(
2k − 1

2k
z

)
z

2k+1

P (z) =
z

2
+
∑
k≥1

exp

(
2k − 1

2k
z +

z

2
− z

2

)
1

2k
z

2

P (z) =
z

2
+
∑
k≥1

exp

(
2k−1 − 1

2k−1
z

2

)
exp

(z
2

) 1

2k
z

2

P (z) =
z

2
+ exp

(z
2

)∑
k≥1

exp

(
2k−1 − 1

2k−1
z

2

)
1

2k
z

2

P (z) =
z

2
+ ez/2P

(z
2

)
Back to the EGF:
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P (z) =
∑
n≥1

exp

(
2n−1 − 1

2n−1
z

)
z

2n

P (z) =
∑
n≥1

exp
(
z − z

2n−1

) z

2n

P (z) =
∑
n≥1

exp (z) exp
(
− z

2n−1

) z

2n

P (z) = zez
∑
n≥1

exp
(
− z

2n−1

) 1

2n

P (z) = zez
∑
n≥1

∑
k≥0

1

k!

(−1)kzk

2k(n−1)
1

2n

P (z) = zez
∑
k≥0

(−1)kzk

k!

∑
n≥1

1

2k(n−1)
1

2n

P (z) = zez
∑
k≥0

(−1)kzk

k!

2k

2k+1 − 1

This is a binomial convolution of two EGFs. The first one is zez which is the EGF
of the sequence an = n, the second one is the EGF of the sequence bk = (−2)k

2k+1−1 :

pn =
∑

0≤k≤n

(
n

k

)
(n− k)

(−1)k2k

2k+1 − 1

We can use the absorption (n− k)
(
n
k

)
= n

(
n−1
k

)
:

pn = n
∑

0≤k≤n

(
n− 1

k

)
(−1)k2k

2k+1 − 1

pn = n
∑

0≤k≤n

(−1)k
(
n− 1

k

)
1

2

2k+1

2k+1 − 1

pn =
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)
1

2

2k+1 + 1− 1

2k+1 − 1

pn =
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)(
1 +

1

2k+1 − 1

)

pn =
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)
+
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)
1

2k+1 − 1
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By the binomial theorem, the first sum is equal to (1 − 1)n−1, which is just 0 for
n > 2:

pn =
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)
1

2k+1 − 1

pn =
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)
1

2k+1

1

1− 1
2k+1

pn =
n

2

∑
0≤k≤n

(−1)k
(
n− 1

k

)
1

2k+1

∑
j≥0

1

2j(k+1)

pn =
n

2

∑
j≥0

∑
0≤k<n

(−1)k
(
n− 1

k

)
1

2k(j+1)+(j+1)

pn =
n

2

∑
j≥0

1

2j+1

∑
0≤k<n

(−1)k
(
n− 1

k

)
1

2k(j+1)

We can use the binomial theorem again:

pn =
n

2

∑
j≥0

1

2j+1

∑
0≤k<n

(−1)k
(
n− 1

k

)
1

2k(j+1)

pn =
n

2

∑
j≥0

1

2j+1

(
1− 1

2j+1

)n−1

pn =
n

2

∑
j≥1

1

2j

(
1− 1

2j

)n−1

Let’s approximate it by an integral:
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pn =
n

2

∑
j≥1

1

2j

(
1− 1

2j

)n−1
+

∫ ∞
1

1

2x

(
1− 1

2x

)n−1
dx−

∫ ∞
1

1

2x

(
1− 1

2x

)n−1
dx


pn =

n

2

 (1− 2−j)n

n log 2

∣∣∣∞
1

+
∑
j≥1

1

2j

(
1− 1

2j

)n−1
−
∑
j≥1

∫ j+1

j

1

2x

(
1− 1

2x

)n−1
dx


pn =

1− 2−n

2 log 2
+
n

2

∑
j≥1

2−j
(
1− 2−j

)n−1 −∑
j≥1

(1− 2−j−1)n − (1− 2−j)n

n log 2


pn =

1− 2−n

2 log 2
+

1

2 log 2

∑
j≥1

2−jn log 2
(
1− 2−j

)n−1 − (1− 2−j−1)n + (1− 2−j)n



Now we’ll use the approximation (1− 2−j)n−1 ∼ exp(−n2−j).

pn ∼
1− 2−n

2 log 2
+

1

2 log 2

∑
j≥1

2−jn log 2 exp(−n2−j)− exp(−(n+ 1)2−j−1) + exp(−(n+ 1)2−j)



Let’s define k = j+ blg nc = j+ lg n−{lg n}. Notice that n2− lgn = 1 and also:

exp(−(n+ 1)2−j) = exp(−(n+ 1)2−k−lgn+{lgn})

exp(−(n+ 1)2−j) = exp(−(n+ 1)2− lgn 2−k+{lgn})

exp(−(n+ 1)2−j) = exp

(
−n+ 1

n
2−k+{lgn}

)
exp(−(n+ 1)2−j) = exp

(
−
(

1 +
1

n

)
2−k+{lgn}

)
exp(−(n+ 1)2−j) ∼ exp(−2−k+{lgn})

Substituting:

pn ∼
1− 2−n

2 log 2
+

1

2 log 2

∑
j≥1

(2−jn log 2 + 1) exp(−n2−j)− exp(−n2−j−1)


pn ∼

1− 2−n

2 log 2
+

1

2 log 2

 ∑
k≥1−blgnc

(2−k+{lgn} log 2 + 1) exp(−2−k+{lgn})− exp(−2−k−1+{lgn})


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The terms for k < 1 − blg nc are exponentially small, so we can extend the range
of summation for all k:

pn ∼
1− 2−n

2 log 2
+

1

2 log 2

(∑
k

(2−k+{lgn} log 2 + 1) exp(−2−k+{lgn})− exp(−2−k−1+{lgn})

)

pn ∼
1− 2−n

2 log 2
+ f({lg n})

The whole summation is now a function of the fractional part of lg n, so we have
f(2x) = f(x) and this function is therefore oscillating.

Out of curiosity, here’s the graph of the original function divided by its approxima-
tion. It is equal to 1, up to a precision of 10−5.

1.4 Exercise 9.5
For M = 365, how many people are needed to be 99% sure that two have the same
birthday?

Solution
The number of persons is given by:

N ∼
√
−2M ln p =

√
−2× 365 ln 0.01 = 57.98

The desired percentage can be achieved with 58 persons.

1.5 Exercise 9.37
Find [zn]eαC(z) where C(z) is the Cayley function.

Solution
The Cayley function is defined by C(z) = zeC(z). We’ll solve it by using this

version of the Lagrange Inversion, valid when z = f(A(z)), f(0) = 0 and f ′(0) 6= 0:
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[zn]g(A(z)) =
1

n
[un−1]g′(u)

(
u

f(u)

)n
We have:

z =
C(z)

eC(z)

f(u) =
u

eu

f(0) =
0

e0
= 0

f ′(u) = (1− u)eu

f ′(0) = (1− 0)× 0 = 1 6= 0

g(u) = eαu

g′(u) = αeαu

We need to multiply the result of the formula by n!, since it’s an EGF.

n![zn]eαC(z) = n!
1

n
[un−1]g′(u)

(
u

f(u)

)n
n![zn]eαC(z) = (n− 1)![un−1]αeαu

(
ueu

u

)n
n![zn]eαC(z) = (n− 1)![un−1]αe(α+n)u

n![zn]eαC(z) = (n− 1)![un−1]
∑
k≥0

α
1

k!
(α+ n)kuk

n![zn]eαC(z) = (n− 1)!α
1

(n− 1)!
(α+ n)n−1

n![zn]eαC(z) = α(α+ n)n−1

1.6 Exercise 9.38
(Abel’s binomial theorem) Use the result of the previous exercise and the identity
e(α+β)C(z) = eαC(z)eβC(z) to prove that

(α+ β)(n+ α+ β)n−1 = αβ
∑
k

(
n

k

)
(k + α)k−1(n− k + β)n−k−1.

Solution
We start by extracting coefficients from the three EGFs:
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[zn]eαC(z) = α(α+ n)n−1

[zn]eβC(z) = β(β + n)n−1

[zn]e(α+β)C(z) = (α+ β)(α+ β + n)n−1

The product of EGFs if the EGF of the binomial convolution of their coefficients:

(α+ β)(α+ β + n)n−1 =
∑
k

(
n

k

)
α(α+ k)k−1β(β + n− k)n−k−1

(α+ β)(α+ β + n)n−1 = αβ
∑
k

(
n

k

)
(α+ k)k−1(β + n− k)n−k−1

1.7 Exercise 9.99
Show that the probability that a random mapping of size N has no singleton cycles is
∼ 1/e, the same as for permutations (!).

Solution
The symbolic construction for mappings with no singletons is:

M(z) = SET (CY C(C(z))− CY C1(C(z)))

M(z) = exp

(
log

(
1

1− C(z)

)
− C(z)

)
M(z) = exp

(
log

(
1

1− C(z)

))
exp(−C(z))

M(z) =
exp(−C(z))

1− C(z)

We’ll use the Lagrange Inversion with the following parameters:

f(u) =
u

eu

g(u) =
e−u

1− u
g′(u) = e−u

u

(1− u)2

Applying the formula:
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n![zn]M(z) =
n!

n
[un−1]g′(u)

(
u

f(u)

)n
n![zn]M(z) = (n− 1)![un−1]e−u

u

(1− u)2
(eu)

n

n![zn]M(z) = (n− 1)![un−1]eu(n−1)
u

(1− u)2

n![zn]M(z) = (n− 1)![un−1]
∑
q≥0

∑
0≥k≥q

1

k!
(n− 1)k(q − k)uq

n![zn]M(z) = (n− 1)!
∑

0≥k≥n−1

1

k!
(n− 1)k(n− 1− k)

This sum is telescoping. Let’s call it T (n):

T (n) =
∑

0≥k≥n−1

1

k!
(n− 1)k(n− 1− k)

T (n) =
∑

0≥k≥n−1

n− 1

k!
(n− 1)k −

∑
0≥k≥n−1

k

k!
(n− 1)k

T (n) =
(n− 1)(n− 1)n−1

(n− 1)!
+

∑
0≥k≥n−2

n− 1

k!
(n− 1)k −

∑
1≥k≥n−1

k

k!
(n− 1)k

T (n) =
(n− 1)n

(n− 1)!
+

∑
0≥k≥n−2

n− 1

k!
(n− 1)k −

∑
1≥k≥n−1

(n− 1)

(k − 1)!
(n− 1)k−1

T (n) =
(n− 1)n

(n− 1)!
+

∑
0≥k≥n−2

n− 1

k!
(n− 1)k −

∑
0≥k≥n−2

n− 1

k!
(n− 1)k

T (n) =
(n− 1)n

(n− 1)!

Substituting back:

n![zn]M(z) = (n− 1)!T (n)

n![zn]M(z) = (n− 1)!
(n− 1)n

(n− 1)!

n![zn]M(z) = (n− 1)n

The total number of mappings is nn, so the probability of a random mapping having
no singletons is:
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µ =
(n− 1)n

nn

µ =

(
1− 1

n

)n
In the limit for large n:

lim
n→∞

µ = lim
n→∞

(
1− 1

n

)n
lim
n→∞

µ = e−1

So the probability is 1/e as claimed.

2 Week 4

2.1 Exercise 6.6
What proportion of the forests with N nodes have no trees consisting of a single node?
For N = 1, 2, 3, and 4, the answers are 0, 1/2, 2/5, and 3/7, respectively.

Solution
The number of general trees that are not empty is:

T (z) = z + zT (z) + zT (z)2 + · · ·
T (z) = zSEQ(T (z))

T (z) =
z

1− T (z)

T (z)2 − T (z) + z = 0

T (z) =
1−
√

1− 4z

2

11



The number of general trees that have more than one node is:

U(z) = zT (z) + zT (z)2 + · · ·
U(z) = zT (z)SEQ(T (z))

U(z) =
zT (z)

1− T (z)

U(z) =
z 1−

√
1−4z
2

1− 1−
√
1−4z
2

U(z) =
z(1−

√
1− 4z)

1 +
√

1− 4z

U(z) =
z(1−

√
1− 4z)(1−

√
1− 4z)

(1 +
√

1− 4z)(1−
√

1− 4z)

U(z) =
(1−

√
1− 4z)2

4

Therefore, the number of forests with trees not consisting of a single node is:
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F (z) = SEQ(U(z))

F (z) =
1

1− (1−
√
1−4z)2
4

F (z) =
4

4− (1−
√

1− 4z)2

F (z) =
4

4− 1 + 2
√

1− 4z − (1− 4z)

F (z) =
2

1 + 2z +
√

1− 4z

F (z) =
2(1 + 2z −

√
1− 4z)

(1 + 2z +
√

1− 4z)(1 + 2z −
√

1− 4z)

F (z) =
2(1 + 2z −

√
1− 4z)

1 + 4z + 4z2 − (1− 4z)

F (z) =
1 + 2z −

√
1− 4z

2z(2 + z)

F (z) =
1

4

(
1

z
−
√

1− 4z

z
+

3

2 + z
+

√
1− 4z

2 + z

)
F (z) =

1

4

(
1

z
−
√

1− 4z

z
+

3

2

(
1

1 + z/2

)
+

(√
1− 4z

2 + z

))
z[n]F (z) =

1

4

(
[z = −1]− [zn]

(√
1− 4z

z

)
+

3

2
(−2)−n + [zn]

(√
1− 4z

2 + z

))

Let’s change the variable on the last term, introducing y = 4z so z = y/4:

[zn]

(√
1− 4z

2 + z

)
→ [yn]

(√
1− y

2 + y/4

)

We can now use the radius of convergence transfer theorem, by setting f(y) =
1

2+y/4 and α = −1/2:
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[yn]
f(y)

(1− y)α
∼ f(1)

Γ(α)
nα−1

[yn]
f(y)

(1− y)α
∼
(

1

2 + 1/4

)
1

Γ(−1/2)
n−

1
2−1

[yn]
f(y)

(1− y)α
∼ −

(
4

9

)
1

2
√
π
n−

3
2

[yn]
f(y)

(1− y)α
∼ − 2

9n
√
nπ

Taking this result back to z:

f(y)

(1− y)α
∼
∑
n

− 2

9n
√
nπ

yn

f(4z)

(1− 4z)α
∼
∑
n

− 2

9n
√
nπ

(4z)n

[zn]

√
1− 4z

2 + z
∼ − 22n+1

9n
√
nπ

We still have the second term to solve:

[zn]

√
1− 4z

z
= (−4)n+1

(
1/2

n+ 1

)
[zn]

√
1− 4z

z
= −

(
2n+ 2

n+ 1

)
1

2n+ 1

[zn]

√
1− 4z

z
∼ − 22n+2√

π(n+ 1)

1

2n+ 1

The terms [z = −1] and 3
2 (−2)−n are O(1) so we’ll ignore them. The sum of the

remaining terms are:

[zn]F (z) ∼ 1

4

(
1

2n+ 1

22n+2√
π(n+ 1)

− 22n+1

9n
√
nπ

)

[zn]F (z) ∼ 1

4

(
22n+1

n
√
nπ
− 22n+1

9n
√
nπ

)
[zn]F (z) ∼ 1

4

(
1− 1

9

)(
22n+1

n
√
nπ

)
[zn]F (z) ∼ 1

9

(
22n+2

n
√
nπ

)
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The total number of forests is equal to the total number of binary trees, which is
given by the Catalan Numbers:

B(n) ∼ 22n

n
√
nπ

Dividing the two quantities, we get the asymptotic for the desired proportion:

µ ∼ 1

9

22n+2

n
√
nπ

/ 22n

n
√
nπ

µ ∼ 4

9

2.2 Exercise 6.27
For N = 2n − 1, what is the probability that a perfectly balanced tree structure (all 2n

external nodes on level n) will be built, if all N ! key insertion sequences are equally
likely?

Solution
If the tree is perfectly balanced, then the root node is the median, and the left and

right subtrees have the same size. Let T (2n−1) be the number of permutations leading
to a balanced tree when the permutation has 2n − 1 members. The first element is the
median, left and right subtrees have each (2n−1)−1

2 = 2n−1 − 1 members each. We
can mix the elements of the subtrees in

(
2n−2

2n−1−1
)

ways (you should place the 2n−1 − 1
elements from the left tree into 2n − 2 positions, and then the right subtree positions
are determined). Therefore, our recurrence is:

T (2n − 1) =

(
2n − 2

2n−1 − 1

)
(T (2n−1 − 1))2

Let k = 2n − 1, then:

T (2n − 1) =

(
2n − 2

2n−1 − 1

)
T (2n−1 − 1)2

T (k) =

(
k − 1
k−1
2

)
T (
k − 1

2
)2

T (k)

k!
=

1

k!

(
(k − 1)!(
k−1
2 !
)2
)
T (
k − 1

2
)2

T (k)

k!
=

(k − 1)!

k!

T (k−12 )2(
k−1
2 !
)2

T (k)

k!
=

1

k

(
T (k−12 )
k−1
2 !

)2
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Now let Q(k) = T (k)/k!:

T (k)

k!
=

1

k

(
T (k−12 )
k−1
2 !

)2

Q(k) =
1

k
Q(
k − 1

2
)2

Q(2n − 1) =
1

2n − 1
Q(2n−1 − 1)2

Let S(n) = Q(2n − 1):

Q(2n − 1) =
1

2n − 1
Q(2n−1 − 1)2

S(n) =
1

2n − 1
S(n− 1)2

S(n) =
∏

0≤k<n

(
1

2n−k − 1

)2k

S(n) = exp

log

 ∏
0≤k<n

(
1

2n−k − 1

)2k


S(n) = exp

 ∑
0≤k<n

2k log

(
1

2n−k − 1

)
S(n) = exp

 ∑
0≤k<n

2k log

(
2k−n

1

1− 2k−n

)
S(n) = exp

 ∑
0≤k<n

2k
(

(k − n) log 2 + log
1

1− 2k−n

)
S(n) = exp

 ∑
0≤k<n

2k(k − n) log 2 +
∑

0≤k<n

2k log
1

1− 2k−n



Now we have two sums to evaluate. The first one is:
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∑
0≤k<n

2k(k − n) log 2 = log 2

 ∑
0≤k<n

k2k +
∑

0≤k<n

n2k


∑

0≤k<n

2k(k − n) log 2 = log 2 (((n− 2)2n + 2)− (n(2n − 1)))

∑
0≤k<n

2k(k − n) log 2 = (n+ 2− 2n+1) log 2

For the second sum, we notice that 2k−n < 1 and therefore we can expand the log
into a series:

∑
0≤k<n

2k log
1

1− 2k−n
=

∑
0≤k<n

2k
∑
j≥1

(
2k−n

)j
j∑

0≤k<n

2k log
1

1− 2k−n
=

∑
0≤k<n

∑
j≥1

2k
2kj2−nj

j∑
0≤k<n

2k log
1

1− 2k−n
=
∑
j≥1

∑
0≤k<n

2k
2kj2−nj

j∑
0≤k<n

2k log
1

1− 2k−n
=
∑
j≥1

1

j2nj

∑
0≤k<n

2k(j+1)

∑
0≤k<n

2k log
1

1− 2k−n
=
∑
j≥1

1

j2nj

∑
0≤k<n

(
2j+1

)k
∑

0≤k<n

2k log
1

1− 2k−n
=
∑
j≥1

1

j2nj
2n(j+1) − 1

2j+1 − 1∑
0≤k<n

2k log
1

1− 2k−n
=
∑
j≥1

1

j

2n − 2−nj

2j+1 − 1

On the last expression, 2−nj is negligible next to 2n, so we’ll ignore it.

∑
0≤k<n

2k log
1

1− 2k−n
=
∑
j≥1

1

j

2n − 2−nj

2j+1 − 1∑
0≤k<n

2k log
1

1− 2k−n
∼
∑
j≥1

1

j

2n

2j+1 − 1∑
0≤k<n

2k log
1

1− 2k−n
∼ 2n

∑
j≥1

1

j(2j+1 − 1)
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This last sum is convergent, its value is 0.440539 (found numerically). Now we
can rewind everything:

S(n) ∼ exp
(
(n+ 2− 2n+1) log 2 + 0.440539× 2n

)
S(n) ∼ (exp (log 2))n+2−2n+1

exp(0.440539× 2n)

S(n) ∼ 2n+2−2n+1

exp(0.440539× 2n)

Q(2n − 1) ∼ 2n+2−2n+1

exp(0.440539× 2n)

T (2n − 1)

(2n − 1)!
∼ 2n+2−2n+1

exp(0.440539× 2n)

T (2n − 1) ∼ (2n − 1)!
(

2n+2−2n+1

exp(0.440539× 2n)
)

If we make N = 2n − 1, then n = log2(N + 1) and we’ll have:

T (N) ∼ N !
(

2n+2−2n+1

exp(0.440539× 2n)
)

T (N) ∼ N !
(

2log2(N+1)+2−2log2(N+1)+1

exp(0.440539× 2log2(N+1))
)

T (N) ∼ N !
(

2log2(N+1)+2−2(N+1) exp(0.440539(N + 1))
)

T (N) ∼ N !
(

(N + 1)2−2N (exp(0.440539))
N+1

)
T (N) ∼ N !

(
4(N + 1)4−(N+1) (exp(0.440539))

N+1
)

T (N) ∼ N !

(
4(N + 1)

(
exp(0.440539)

4

)N+1
)

T (N) ∼ N !
(
4(N + 1)0.388386N+1

)
To get the desired probability, we divide by the total number of permutations, which

is N !:

µ(N) ∼ 4(N + 1)0.388386N+1

2.3 Exercise 6.43
Internal nodes in binary trees fall into one of three classes: they have either two, one, or
zero external children. What fraction of the nodes are of each type, in a random binary
search tree of N nodes?

Solution
We’ll use the following theorem from the book: Consider all binary search trees of

size N , and let e(N) be the number of trees where the root has the desired property.
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Let E(z) be the exponential generating function of e(N). Then, the total number of
nodes with the desired property is given by the following EGF:

C(z) =
1

(1− z)2

(
E(0) +

∫ z

0

(1− x)2E′(x)dx

)
Let’s do the math for each case. For internal nodes with 0 external children (leaves),

e(n) = 0 for n > 1, since the root will always have at least one child. Also, e(1) = 1,
so in general e(n) = [n = 1]. The EGF is:

E(z) =
∑
n≥0

[n = 1]

n!
zn

E(z) = z

E′(z) = 1

Substituting:

C(z) =
1

(1− z)2

(∫ z

0

(1− x)2dx

)
C(z) =

1

(1− z)2

(
x− x2 +

x3

3

∣∣∣z
0

)
C(z) =

1

(1− z)2

(
z − z2 +

z3

3

)
C(z) =

z

(1− z)2
− z2

(1− z)2
+

1

3

z3

(1− z)2

c(n) = n!

(
n− (n− 1) +

1

3
(n− 2)

)
c(n) = n!

(
n+ 1

3

)

This is the total number of leaves in all binary search trees of size N . If we divide
by N !, then we get the average number of leaves in each tree. Dividing again by N ,
we get the ratio between leaves and nodes on a random binary search tree.

µ =
n!

n!n

n+ 1

3

µ =
1

3
+

1

3n

µ ∼ 1

3
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Now let’s do the case where a node has exactly one child. Clearly there’s no such
node for trees of size 1. For sizes n > 1, the root has one child only when the root is
the greatest or the smallest element of the permutation. In each of these cases, there
are (N − 1)! permutations starting with this element. The EGF for n ≤ 1 is:

e(n) = 2(n− 1)!− 2[n = 1]

E(z) =
∑
z≥0

(2(n− 1)!− 2[n = 1])
zn

n!

E(z) =
∑
z≥0

2(n− 1)!

n!
zn −

∑
z≥0

2[n = 1]
zn

n!

E(z) = 2

∑
z≥1

1

n
zn

− 2z

E(z) = −2z + 2 log
1

1− z

E′(z) = −2 +
2

1− z

Substituting:

C(z) =
1

(1− z)2

(∫ z

0

(1− x)2
(
−2 +

1

1− x

)
dx

)
C(z) =

2

(1− z)2

(∫ z

0

−(1− x)2 + (1− x)dx

)
C(z) =

2

(1− z)2

(
x2

2
− x3

3

∣∣∣z
0

)
C(z) =

3z2 − 2z3

3(1− z)2

C(z) =
z2

(1− z)2
− 2z3

3(1− z)2

C(z) =
z2

(1− z)2
− 2z3

3(1− z)2

c(n) = n!

(
(n− 1)− 2

3
(n− 2)

)
c(n) = n!

(
n+ 1

3

)

We conclude that the number of nodes with exactly one child is the same as the
number of nodes without children, and the ratio is:

20



µ ∼ 1

3

On the last case, the number of trees whose root has two children is (N−2)(N−1)!,
for a tree of size N > 1:

e(n) = (n− 2)(n− 1)! + [n = 1]

E(z) =
∑
z≥0

((n− 2)(n− 1)! + [n = 1])
zn

n!

E(z) =
∑
z≥0

(n− 2)(n− 1)!

n!
zn −

∑
z≥0

[n = 1]
zn

n!

E(z) =

∑
z≥1

(n− 2)

n
zn

+ z

E(z) = z +
1

1− z
− 2 log

1

1− z

E′(z) = 1 +
1

(1− z)2
− 2

1− z

Substituting:

C(z) =
1

(1− z)2

(∫ z

0

(1− x)2
(

1 +
1

(1− x)2
− 2

1− x

)
dx

)
C(z) =

1

(1− z)2

(∫ z

0

(1− x)2 + 1 + 2(1− x)dx

)
C(z) =

1

(1− z)2

(
x3

3

∣∣∣z
0

)
C(z) =

z3

3(1− z)2

c(n) =
n− 2

3

The ratio is:

µ =
n!

n!n

n− 2

3

µ ∼ 1

3
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2.4 Exercise 7.29
An arrangement of N elements is a sequence formed from a subset of the elements.
Prove that the EGF for arrangements is ez/(1−z). Express the coefficients as a simple
sum and interpret that sum combinatorially.

Solution
The set of all arrangements of size n is the same as the set composed of all permu-

tations of size k, for all 0 ≤ k ≤ n. We can model this as a cartesian par of urns and
permutations: take all permutations of size k, and place all n − k remaining elements
on a urn. Using this construct, we will have k! permutations, times 1 urn (the order of
the n − k elements inside the urn is not relevant). This leads directly to the symbolic
construct SEQ(z) ∗ SET (z). The EGF is given by:

G(z) = ez × 1

1− z
=

ez

1− z
The coefficients can be found by the binomial convolution of EGFs:

G(z) = A(z)B(z) =⇒ g(n) =
∑

0≤k≤n

(
n

k

)
akbn−k

In our case:

g(n) =
∑

0≤k≤n

(
n

k

)
k!

The combinatoric interpretation matches our intuition: the set of all arrangements
is the same as the set composed of all permutations of size k, for all 0 ≤ k ≤ n.
The formula sums, for all 0 ≤ k ≤ n, k elements chosen from n, and then apply k!
permutations on them.

2.5 Exercise 7.45
Find the CGF for the total number of inversions in all involutions of lengthN . Use this
to find the average number of inversions in an involution.

Solution
For every inversion (a, b), with 1 ≤ a < b ≤ n, let’s count in how many involutions

of size n it appears. There are three cases we must consider. Notation used: I(n) is the
total number of inversions in all involutions of size n; I1(n), I2(n) and I3(n) are the
total number of inversions due to cases 1, 2 and 3; invol(n) is the number of involutions
of size n, whose EGF is exp(z + z2/2).

Case 1: Both a and b are in the same two-cycle. In this case there is one inversion
for every invol(n − 2) involutions where this two-cycle appears. The total number of
inversions generated by this case is:
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I1(n) =
∑

1≤a<b≤n

invol(n− 2)

I1(n) =

n−1∑
a=1

n∑
b=a+1

invol(n− 2)

I1(n) =

n−1∑
a=1

(n− a) invol(n− 2)

I1(n) =

n−1∑
k=1

k invol(n− 2)

I1(n) =
n(n− 1)

2
invol(n− 2)

Case 2: One of the elements is in a one-cycle, the other is in a two-cycle. Two
subcases: this is either (a) and (b, r); or (b) and (a, r). In the first subcase, there is a
inversion on invol(n − 3) involutions if r < a, on the second case if r > b. The total
is:

I2(n) =
∑

1≤a<b≤n

(∑
r<a

invol(n− 3) +
∑
r>b

invol(n− 3)

)

I2(n) =
∑

1≤a<b≤n

invol(n− 3)

(∑
r<a

1 +
∑
r>b

1

)
I2(n) =

∑
1≤a<b≤n

invol(n− 3) ((a− 1) + (n− b))

I2(n) =

n−1∑
a=1

n∑
b=a+1

(n+ a− 1− b)invol(n− 3)

I2(n) =

n−1∑
a=1

(
(n− a)(n+ a− 1)− (n− a)

n+ a+ 1

2

)
invol(n− 3)

I2(n) =

n−1∑
a=1

(
1

2
(n− a)(n+ a− 3)

)
invol(n− 3)

I2(n) =
1

3
(n3 − 3n2 + 2n)invol(n− 3)

I2(n) =
1

3
n(n− 1)(n− 2)invol(n− 3)

Case 3: Both elements are in different two-cycles. Let’s call them (a, r) and (b, s).
There is an inversion in invol(n− 4) involutions if s < r. The total is:
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I3(n) =
∑

1≤a<b≤n

∑
1≤s<r≤n−2

invol(n− 4)

I3(n) =
∑

1≤a<b≤n

(n− 2)(n− 3)

2
invol(n− 4)

I3(n) =
n(n− 1)

2

(n− 2)(n− 3)

2
invol(n− 4)

I3(n) =
1

4
n(n− 1)(n− 2)(n− 3)invol(n− 4)

Now we’ll calculate the EGF for these expressions. For case 1:

I1(z) =
∑
n≤0

n(n− 1)

2
invol(n− 2)

zn

n!

I1(z) =
∑
n≤0

1

2
invol(n− 2)

zn

(n− 2)!

I1(z) =
z2

2

∑
n≤0

invol(n− 2)
zn−2

(n− 2)!

I1(z) =
z2

2

∑
n≤2

invol(n)
zn

n!

I1(z) =
z2

2
Invol(z)

This last expression is valid for n > 2. Using the same method we conclude:

I2(z) =
z3

3
Invol(z)

I3(z) =
z4

4
Invol(z)

The final EGF for all inversions in all involutions is:

I(z) =

(
z2

2
+
z3

3
+
z4

4

)
exp

(
z +

z2

2

)
In order to find the average number of inversions in an involution, we’ll consider

the contributions of I1(n), I2(n) and I3(n) in separate. We’ll also use the result that:

invol(n) ∼ 1√
2
√
e
e
√
n
(n
e

)n/2
For I1(n):
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µ1(n) =
I1(n)

invol(n)

µ1(n) =
n(n−1)

2 invol(n− 2)

invol(n)

µ1(n) ∼
n(n−1)

2 e
√
n−2 (n−2

e

)n−2
2

e
√
n
(
n
e

)n
2

µ1(n) ∼ n(n− 1)

2
e
√
n−2−

√
n

(
n− 2

e

)n
2−1 ( e

n

)n
2

µ1(n) ∼ n(n− 1)

2
e
√
n−2−

√
n

(
n− 2

n

)n
2
(

e

n− 2

)
Now we’ll consider what happens to this expression when n is large.

lim
n→∞

e
√
n−2−

√
n = 1

lim
n→∞

(
n− 2

n

)n
2

= lim
n→∞

(
1− 2

n

)n
2

lim
n→∞

(
n− 2

n

)n
2

= lim
k→∞

(
1− 1

k

)k
lim
n→∞

(
n− 2

n

)n
2

= e−1

Substituting:

µ1(n) ∼ n(n− 1)

2
e
√
n−2−

√
n

(
n− 2

n

)n
2
(

e

n− 2

)
µ1(n) ∼ n(n− 1)

2

1

e

(
e

n− 2

)
µ1(n) ∼ n(n− 1)

2(n− 2)

µ1(n) ∼ n

2

For I2(n):
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µ2(n) =
I2(n)

invol(n)

µ2(n) =
n(n−1)(n−2)

3 invol(n− 3)

invol(n)

µ2(n) ∼ n(n− 1)(n− 2)

3
e
√
n−3−

√
n

(
n− 3

e

)n
2−

3
2 ( e

n

)n
2

µ2(n) ∼ n(n− 1)(n− 2)

3
e
√
n−3−

√
n

(
n− 3

n

)n
2
(

e

n− 3

) 3
2

The middle expression is:

lim
n→∞

(
n− 3

n

)n
2

= lim
n→∞

(
1− 3

n

)n
2

lim
n→∞

(
n− 3

n

)n
2

= lim
k→∞

(
1− 3

2

1

k

)k
lim
n→∞

(
n− 2

n

)n
2

= e−
3
2

Substituting:

µ2(n) ∼ n(n− 1)(n− 2)

3
e
√
n−3−

√
n

(
n− 3

n

)n
2
(

e

n− 3

) 3
2

µ2(n) ∼ n(n− 1)(n− 2)

3
e−

3
2

(
e

n− 3

) 3
2

µ2(n) ∼ n(n− 1)(n− 2)

3
(√
n− 3

)3
µ2(n) ∼ (

√
n)

3

3

For I3(n):
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µ3(n) =
I3(n)

invol(n)

µ3(n) =
n(n−1)(n−2)(n−3)

4 invol(n− 4)

invol(n)

µ3(n) ∼ n(n− 1)(n− 2)(n− 3)

4
e
√
n−4−

√
n

(
n− 4

e

)n
2−2 ( e

n

)n
2

µ3(n) ∼ n(n− 1)(n− 2)(n− 3)

4

(
n− 4

n

)n
2
(

e

n− 4

)2

µ3(n) ∼ n(n− 1)(n− 2)(n− 3)

4
e−2

(
e

n− 4

)2

µ3(n) ∼ n(n− 1)(n− 2)(n− 3)

4(n− 2)2

µ3(n) ∼ n2

4

Summing everything, the average number of inversions in an involution is:

µ ∼ n

2
+

(
√
n)

3

3
+
n2

4

µ ∼ (
√
n)

2

2
+

(
√
n)

3

3
+

(
√
n)

4

4

2.6 Exercise 7.61
Use asymptotics from generating functions (see Section 5.5) or a direct argument to
show that the probability for a random permutation to have j cycles of length k is
asymptotic to the Poisson distribution e−λλj/j! with λ = 1/k.

Solution
The construction for random permutations may be expressed as:

SET (CY C(z)) = SET (
∑
k

CY Ck(z))

We’ll annotate the kth cycle, turning this EGF into a BGF:

27



R(u, z) = SET (CY C1(z) + · · ·+ CY Ck−1(z) + uCY Ck(z) + CY Ck+1(z) + · · · )
R(u, z) = SET (CY C(z)− CY Ck(z) + uCY Ck(z))

R(u, z) = exp

(
ln

(
1

1− z

)
+ (u− 1)

zk

k

)

R(u, z) =
exp

(
(u− 1) z

k

k

)
1− z

Since this BGF is also an EGF, the probability of a random permutation of size n
to have j cycles of length k is the coefficient of [ujzn] on this BGF.

[ujzn]R(u, z) = [ujzn]
exp

(
(u− 1) z

k

k

)
1− z

[ujzn]R(u, z) = [ujzn]
exp

(
u z

k

k

)
exp

(
− z

k

k

)
1− z

[ujzn]R(u, z) = [ujzn]
exp

(
− z

k

k

)
1− z

∑
i

1

i!
ui
zki

ki

[ujzn]R(u, z) = [zn]
exp

(
− z

k

k

)
1− z

1

j!

zkj

kj

Let’s use the radius of convergence transfer theorem:

[ujzn]R(u, z) = [zn]
exp

(
− z

k

k

)
1− z

1

j!

zkj

kj

[ujzn]R(u, z) ∼
exp

(
− 1k

k

)
Γ(1)

1

j!

1kj

kj
n1−1

[ujzn]R(u, z) ∼ exp

(
−1

k

)
1

j!kj

If we take λ = 1/k, then we reach the desired Poisson expression:
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[ujzn]R(u, z) ∼ exp

(
−1

k

)
1

j!kj

[ujzn]R(u, z) ∼ e−λλj

j!

3 Week 3

3.1 Exercise 4.9
If α < β, show that αN is exponentially small relative to βN . For β = 1.2 and
α = 1.1, find the absolute and relative errors when αN + βN is approximated by βN ,
for N = 10 and N = 100.

Solution
αN + βN βN abs.error rel.error

N = 10 8.78 6.19 2.59 29.5%
N = 100 82831755.13 82817974.52 13780.60 0.016%

3.2 Exercise 4.71
Show that P (N) =

∑
k≥0

(N−k)k(N−k)!
N ! =

√
πN/2 +O(1)

Solution
Let’s call the summand Q(n,k):

Q(n, k) =
(n− k)k(n− k)!

n!

Q(n, k) = exp

(
ln

(
(n− k)k(n− k)!

n!

))
Q(n, k) = exp (k ln(n− k) + ln (n− k)!− lnn!)

First we use Stirling’s approximation:

lnn! = (n+
1

2
) lnn− n+ log

√
2π +O(

1

n
)

Substituting:

Q(n, k) = exp (k ln(n− k) + ln (n− k)!− lnn!)

Q(n, k) = exp

(
k + (n+

1

2
) ln

(
1− k

n

)
+O(

1

n
) +O(

1

n− k
)

)
The summand is 0 when n = k. Otherwise, we can get rid of O( 1

n−k ):
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1

n− k
=

1
n

1−kn
1

n− k
=

1

n

(
1 +O(

k

n
)

)
O(

1

n− k
) = O(

1

n
)O

(
1 +O(

k

n
)

)
O(

1

n− k
) = O(

1

n
) +O(

k

n2
)

We’ll use now this asymptotic to ln:

ln(1 + k) = k − k2

2
+O(k3)

Substituting:

Q(n, k) = exp

(
k + (n+

1

2
) ln

(
1− k

n

)
+O(

1

n
) +O(

k

n2
)

)
Q(n, k) = exp

(
k + (n+

1

2
)(−k

n
− k2

2n2
+O(

k3

n3
)) +O(

1

n
) +O(

k

n2
)

)
Q(n, k) = exp

(
k − k − k2

2n
− k

2n
− k2

4n2
+O(

k3

n2
) +O(

k3

n3
) +O(

1

n
) +O(

k

n2
)

)
Q(n, k) = exp

(
− k

2n

(
k − 1− 1

2n

)
+O(

k3

n2
) +O(

k3

n3
) +O(

1

n
) +O(

k

n2
)

)
Q(n, k) = exp

(
− k

2n
(k +O(1)) +O(

k3

n2
) +O(

k3

n3
) +O(

1

n
) +O(

k

n2
)

)
Q(n, k) = exp

(
− k

2

2n
+O(

k

n
) +O(

k3

n2
) +O(

k3

n3
) +O(

1

n
) +O(

k

n2
)

)

Some absorptions: O( 1
n ) is absorbed by O( kn ), and both O( kn2 ) and O( k

3

n3 ) are
absorbed by O( k

3

n2 ):
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Q(n, k) = exp

(
− k

2

2n
+O(

k

n
) +O(

k3

n2
) +O(

k3

n3
) +O(

1

n
) +O(

k

n2
)

)
Q(n, k) = exp

(
− k

2

2n
+O(

k

n
) +O(

k3

n2
)

)
Q(n, k) = exp

(
− k

2

2n

)(
1 +O(

k

n
) +O(

k3

n2
)

)

Let’s get back to the sum. We can choose k0 = o(n2/3) and split the sum into two
parts: ∑

k≥0

Q(n, k) =
∑

0≤k≤k0

Q(n, k) +
∑
k>k0

Q(n, k)

In the second part, all terms are exponentially small. We’ll call them ∆.∑
k>k0

exp

(
− k

2

2n

)(
1 +O(

k

n
) +O(

k3

n2
)

)
= ∆

The first part can be further split into three sums:

∑
0≤k≤k0

Q(n, k) =
∑

0≤k≤k0

exp

(
− k

2

2n

)(
1 +O(

k

n
) +O(

k3

n2
)

)
∑

0≤k≤k0

Q(n, k) =
∑

0≤k≤k0

e−
k2

2n +
∑

0≤k≤k0

e−
k2

2nO(
k

n
) +

∑
0≤k≤k0

e−
k2

2nO(
k3

n2
)

Let’s prove that the second sum is O(1). First of all, notice that:

d

dk

(
e−

k2

2n

)
= −k

n
e−

k2

2n

This implies that: ∫
k

n
e−

k2

2n dk = −e− k2

2n

To prove that
∑

0≤k≤k0 e
− k2

2nO( kn ) = O(1) is the same as to prove that
∑

0≤k≤k0
k
ne
− k2

2n <
C for some constant C independent of n or k. Let’s find this constant.
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∑
0≤k≤k0

k

n
e−

k2

2n <
∑

0≤k≤∞

k

n
e−

k2

2n

∑
0≤k≤k0

k

n
e−

k2

2n <

∫ ∞
0

k

n
e−

k2

2n

∑
0≤k≤k0

k

n
e−

k2

2n <
(
−e− k

2n

) ∣∣∣∞
0∑

0≤k≤k0

k

n
e−

k2

2n < 1

∑
0≤k≤k0

k

n
e−

k2

2n = O(1)

The same can be done for the third sum:

∑
0≤k≤k0

k3

n2
e−

k2

2n <
∑

0≤k≤∞

k3

n2
e−

k2

2n

∑
0≤k≤k0

k3

n2
e−

k2

2n <

∫ ∞
0

k3

n2
e−

k2

2n

∑
0≤k≤k0

k3

n2
e−

k2

2n <

(
−
(
k2

n
+ 2

)
e−

k2

2n

) ∣∣∣∞
0∑

0≤k≤k0

k3

n2
e−

k2

2n < 2

∑
0≤k≤k0

k3

n2
e−

k2

2n = O(1)

Plugging back both O(1)s:

∑
0≤k≤k0

Q(n, k) =
∑

0≤k≤k0

e−
k2

2n +
∑

0≤k≤k0

e−
k2

2nO(
k

n
) +

∑
0≤k≤k0

e−
k2

2nO(
k3

n2
)

∑
0≤k≤k0

Q(n, k) =
∑

0≤k≤k0

e−
k2

2n +O(1)

∑
0≤k≤k0

Q(n, k) =
∑
k≥0

e−
k2

2n −
∑
k>k0

e−
k2

2n +O(1)
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Again we have two sums. The second sum is exponentially small, we’ll call it ∆1.
The first sum can be approximated by a Gaussian integral:

∑
k≥0

e−
k2

2n =

∫ ∞
0

e−
k2

2n dk +O(1)

∑
k≥0

e−
k2

2n =
1

2

√
2πn+O(1)

∑
k≥0

e−
k2

2n =

√
πn

2
+O(1)

Summing everything:

∑
k≥0

Q(n, k) =

√
πn

2
+ ∆−∆1 +O(1)

Using Laplace’s method of bounding-and-extending the tail, we know that ∆ −
∆1 = O(1), so the final answer is:

∑
k≥0

Q(n, k) =

√
πn

2
+O(1)

3.3 Exercise 5.1
How many bitstrings of length N have no 000?

Solution
Let’s start by counting all bitstrings ending in 1. These bitstrings are formed by

sequences of tokens 1, 01, 001, and therefore its construction is SEQ(A1 + A01 +
A001). The bitstring ending in zero are the ones ending in 1, concatenated with either
00, 0, or empty. The final construction is SEQ(A1 +A01 +A001)× (ε+A0 +A00).
The generating function is:

A(z) =
1 + z + z2

1− (z + z2 + z3)

A(z) =
1 + z + z2

1− z − z2 − z3

The smallest pole is 1/β = 0.543689 with multiplicity 1 (found numerically). We
can now use this transfer theorem:
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[zn]
f(z)

g(z)
∼ ν (−β)νf(1/β)

g(ν)(1/β)
βnnν−1

[zn]A(z) ∼ −βf(1/β)

g′(1/β)
βn

[zn]A(z) ∼ −β(1 + 1/β + 1/β2)

−3/β2 − 2/β − 1
βn

[zn]A(z) ∼ βn+1 β
2 + β + 1

β2 + 2β + 3

[zn]A(z) ∼ 1.13745× 1.83929n

3.4 Exercise 5.3
Let U be the set of binary trees with the size of a tree defined to be the total number of
nodes (internal plus external), so that the generating function for its counting sequence
is U(z) = z + z3 + 2z5 + 5z7 + 14z9 + . . . . Derive an explicit expression for U(z).

Solution
A tree is an external node, or an internal node connected to two trees. Its construc-

tion is T = Aexternal +Ainternal × T × T . We’re counting both internal and external
nodes, so Aexternal = z and Ainternal = z:

T = Aexternal +Ainternal × T × T
U(z) = z + zU(z)2

U(z) =
1±
√

1− 4z2

2z

Only the negative square root will lead to positive solutions for U(n), so the solu-
tion is:

U(z) =
1−
√

1− 4z2

2z

3.5 Exercise 5.7
Derive an EGF for the number of permutations whose cycles are all of odd length.

Solution
The construction is directly SET (

∑
odd k CY Ck(Z)). The EGF is:
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P (z) = exp

(∑
odd k

zk

k

)

P (z) = exp

(∑
k

zk

k
[k is odd]

)

P (z) = exp

(∑
k

zk

k

(
1− (−1)k

2

))

P (z) = exp

(
1

2

∑
k

zk

k
− 1

2

∑
k

(−z)k

k

)

P (z) = exp

(
1

2
ln

(
1

1− z

)
+

1

2
ln (1 + z)

)
P (z) = exp

(
1

2
ln

(
1 + z

1− z

))
P (z) =

√
1 + z

1− z

3.6 Exercise 5.7
Find the average number of internal nodes in a binary tree of size N with both children
internal.

Solution
Let’s consider only trees whose root is an internal node. There are four kinds of

roots: linking to 2 external nodes (size 1, cost 0, z1u0), left child is an external node
and right is an internal node (size 1, cost 0, z1u0), the reversed of the previous one
(also z1u0), and both children internal (size 1, cost 1, z1u1). The construction is:

P (u, z) = z + 2zP (u, z) + uzP (u, z)2

P (u, z) =
1− 2z −

√
1− 4z + 4z2 − 4uz2

2uz

By setting u = 1 we have the total number of trees (whose root is an internal node):

P (1, z) =
1− 2z −

√
1− 4z

2z

zP (1, z) =
1− 2z −

√
1− 4z

2

[zn] (zP (1, z)) =
1

2

(
[n = 0]− 2[n = 1] +

1

2n− 1

(
2n

n

))
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The cumulative generating function of P (u, z) is the partial derivative of P (u, z)
on u, evaluated at u = 1.

P (u, z) =
1− 2z −

√
1− 4z + 4z2 − 4uz2

2uz

∂

∂u
P (u, z) =

z

u
√

1− 4z + 4z2 − 4uz2
− 1− 2z −

√
1− 4z + 4z2 − 4uz2

2u2z

P ′(1, z) =
z√

1− 4z
− 1− 2z

2z
−
√

1− 4z

2z

[zn]P ′(1, z) =

(
2n− 2

n− 1

)
+ [n = 0]− 1

2
[n = −1]− 1

4n+ 2

(
2n+ 2

n+ 1

)

Now we just have to divide the results. For n > 1:

µ =
[zn]P ′(1, z)

[zn]P (1, z)

µ =
(2n−2
n−1 )−

1
4n+2(

2n+2
n+1 )

1
2(2(n+1)−1)(

2(n+1)
n+1 )

µ =
(n− 1)(n− 2)

4n− 2

3.7 Exercise 5.16
Find the average number of internal nodes in a binary tree of size N with one child
internal and one child external.

Solution
This is the same as the previous exercise, but now the costs are z1u0, 2z1u1 and

z1u0.

P (u, z) = z + 2uzP (u, z) + zP (u, z)2

P (u, z) =
1− 2uz −

√
1− 4uz + 4u2z2 − 4z2

2z

By setting u = 1 we have the same total number of trees:
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P (1, z) =
1− 2z −

√
1− 4z

2z

zP (1, z) =
1− 2z −

√
1− 4z

2

[zn] (zP (1, z)) =
1

2

(
[n = 0]− 2[n = 1] +

1

2n− 1

(
2n

n

))
The cumulative generating function of P (u, z) is the partial derivative of P (u, z)

on u, evaluated at u = 1.

P (u, z) =
1− 2uz −

√
1− 4uz + 4u2z2 − 4z2

2z
∂

∂u
P (u, z) = −1 +

1− 2uz√
1− 4uz + 4u2z2 − 4z2

P ′(1, z) = −1 +
1− 2z√
1− 4z

[zn]P ′(1, z) = −[n = 0] +

(
2n

n

)
− 2

(
2n− 2

n− 1

)

Now we just have to divide the results. For n > 1:

µ =
[zn]P ′(1, z)

[zn]P (1, z)

µ =
(2n
n )−2(

2n−2
n−1 )

1
2(2(n+1)−1)(

2(n+1)
n+1 )

µ =
(n+ 1)(n− 1)

2n− 1

4 Week 2

4.1 Exercise 2.17
Solve the recurrence.

AN = AN−1 − 2AN−1

N + 2
(

1− 2AN−1

N

)
for N > 0 with A0 = 0.

This recurrence describes the following random process: A set of N elements col-
lect into ”2-nodes” and ”3-nodes.” At each step each 2-node is likely to turn into a
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3-node with probability 2/N and each 3-node is likely to turn into two 2-nodes with
probability 3/N What is the average number of 2-nodes after N steps?

Solution
We start by simplifying the recurrence:

AN = AN−1 −
2AN−1
n

+ 2
(

1− 2AN−1
n

)
AN =

n− 6

n
AN−1 + 2

The summation factor suggested by multiplying the coefficients is:

S =
(n− 6)

n

(n− 5)

(n− 1)

(n− 4)

(n− 2)
. . .

3

9

2

8

1

7

S =
6× 5× 4× 3× 2× 1

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

S =

(
n

6

)−1
We can divide both sides by the summation factor:

AN =
n− 6

n
AN−1 + 2(

n

6

)
AN =

n− 6

n

(
n

6

)
AN−1 + 2

(
n

6

)

Using the absorption:

(r − k)

(
r

k

)
= r

(
r − 1

k

)
n− 6

n

(
n

6

)
=
n

n

(
n− 1

6

)
n− 6

n

(
n

6

)
=

(
n− 1

6

)
Let’s define BN =

(
n
6

)
AN :
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(
n

6

)
AN =

n− 6

n

(
n

6

)
AN−1 + 2

(
n

6

)
(
n

6

)
AN =

(
n− 1

6

)
AN−1 + 2

(
n

6

)
BN = BN−1 + 2

(
n

6

)

This last expression is valid for every N > 6:

BN = BN−1 + 2

(
n

6

)
BN = B6 +

∑
7≤k≤n

2

(
k

6

)

BN = B6 + 2
∑

7≤k≤n

(
k

6

)

We can use this general property of binomials:

∑
0≤k≤N

(
k

m

)
=

(
n+ 1

m+ 1

)
∑

7≤k≤N

(
k

6

)
= −1 +

∑
6≤k≤N

(
k

6

)
∑

7≤k≤N

(
k

6

)
= −1 +

∑
0≤k≤N

(
k

6

)
∑

7≤k≤N

(
k

6

)
= −1 +

(
n+ 1

7

)
Substituting back:
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BN = B6 + 2
∑

7≤k≤n

(
k

6

)

BN = 2 + 2

(
−1 +

(
n+ 1

7

))
BN = 2

(
n+ 1

7

)
(
n

6

)
AN = 2

(
n+ 1

7

)
AN = 2

(n+ 1)!

7!(n− 6)!

6!(n− 6)!

n!

AN =
2(n+ 1)

7

The solution for all N > 0 therefore is:{
A0, A1, A2, A3, A4, A5, A6 = 0, 2,−2, 4, 0, 2, 2 N ≤ 6

AN = 2(n+1)
7 N > 6

4.2 Exercise 2.69
Plot the periodic part of the solution to the recurrence aN = 3abN/3c + N for N > 3
with a1 = a2 = a3 = 1 for 1 ≤ N ≤ 972.

Solution
Let’s find the non-periodic part. This can be found by trying to find the exact

solution when N = 3k:

aN = 3abN/3c + n

a3k = 3ab3k/3c + 3k

a3k = 3a3k−1 + 3k

This last equation works for k > 1. We can now define bk = a3k , where b2 =
a32 = a9 = 12 and:
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a3k = 3a3k−1 + 3k

bk = 3bk−1 + 3k

3−k ×
(
bk = 3bk−1 + 3k

)
3−kbk = 3−k × 3bk−1 + 3−k × 3k

3−kbk = 3−k+1bk−1 + 1

3−kbk = 3−(k−1)bk−1 + 1

We further define ck = 3−kbk, where c2 = 3−2b2 = 4/3 and:

3−kbk = 3−(k−1)bk−1 + 1

ck = ck−1 + 1

ck = c2 +
∑

3≤i≤k

1

ck =
4

3
+ k − 2

ck = k − 2

3

3−kbk = k − 2

3

bk = (k − 2

3
)3k

a3k = (k − 2

3
)3k

an = n(−2

3
+ log3 n)

This last equation is only exact for n = 3k and k > 1. We can plot the difference
to check only the periodic part of the solution:
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This graph cross zero when n is a power of 3.

4.3 Exercise 3.20
Solve the recurrence an = 3an−1 − 3an−2 + an−3 for n > 2 with a0 = a1 = 0 and
a2 = 1. Solve the same recurrence with the initial condition on a1 changed to a1 = 1.

Solution
For the first case:

an = 3an−1 − 3an−2 + an−3 + [n = 2]∑
n

anz
n =

∑
n

zn (3an−1 − 3an−2 + an−3 + [n = 2])

A(z) = 3zA(z)− 3z2A(z) + z3A(z) + z2

A(z) =
z2

1− 3z + 3z2 − z3

A(z) =
z2

(1− z)3

z−2A(z) =
1

(1− z)3

z−2A(z) =
∑
n

(
n+ 2

2

)
zn

a(n+ 2) =
(n+ 2)(n+ 1)

2

a(n) =
n(n− 1)

2

For the second case:
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an = 3an−1 − 3an−2 + an−3 + [n = 1]− 2[n = 2]∑
n

anz
n =

∑
n

zn (3an−1 − 3an−2 + an−3 + [n = 1]− 2[n = 2])

A(z) = 3zA(z)− 3z2A(z) + z3A(z) + z − 2z2

A(z) =
z − 2z2

1− 3z + 3z2 − z3

A(z) =
z − 2z2

(1− z)3

A(z) = − 1

(1− z)3
+

3

(1− z)2
− 2

1− z

a(n) = −
(
n+ 2

2

)
+ 3

(
n+ 1

1

)
− 2

a(n) = − (n+ 2)(n+ 1)

2
+ 3(n+ 1)− 2

a(n) =
−n2 − 3n− 2 + 6n+ 6− 4

2

a(n) =
−n2 + 3n

2

a(n) =
n(3− n)

2

4.4 Exercise 3.28
Find an expression for [zn] 1√

1−z ln 1
1−z .Hint: Expand (1−z)−α and differentiate with

respect to α.
Solution
Let’s start by differentiating (1− z)−α:

f(z) = (1− z)−α

d

dα
f(z) = −(1− z)−α ln(1− z)

d

dα
f(z) =

1

(1− z)α
ln

1

1− z

The function we want can be found by setting α = 1/2. Now let’s open the original
function in a series, and differentiate it:
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f(z) = (1− z)−α

f(z) =
∑
n

(
α+ n− 1

n

)
zn

d

dα
f(z) =

∑
n

(
d

dα

(
α+ n− 1

n

))
zn

The derivative of the binomial is:

d

dk

(
k

n

)
=

(
k

n

) ∑
0≤i≤n−1

1

k − i

d

dα

(
α+ n− 1

n

)
=

(
α+ n− 1

n

) ∑
0≤i≤n−1

1

α+ n− 1− i

Substituting everything for α = 1/2:

1√
1− z

ln
1

1− z
=
∑
n

(
1/2 + n− 1

n

) ∑
0≤i≤n−1

1

1/2 + n− 1− i

 zn

1√
1− z

ln
1

1− z
= 2

∑
n

(
1/2 + n− 1

n

) ∑
0≤i≤n−1

1

2n− 2i− 1

 zn

1√
1− z

ln
1

1− z
= 2

∑
n

(
n− 1/2

n

)
(H2n −

Hn

2
)zn

1√
1− z

ln
1

1− z
=
∑
n

1

4n

(
2n

n

)
(2H2n −Hn)zn

[zn]
1√

1− z
ln

1

1− z
=

1

4n

(
2n

n

)
(2H2n −Hn)

5 Week 1

5.1 Exercise 1.14
Follow through the steps above to solve the recurrence

AN = 1 +
2

N

∑
1≤j≤N

Aj−1 for N > 0.
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Solution
Let’s find AN−1 and isolate the sum:

AN−1 = 1 +
2

N − 1

∑
1≤j≤N−1

Aj−1

∑
1≤j≤N−1

Aj−1 =
N − 1

2
(AN−1 − 1)

We can substitute it on the original equation:

AN = 1 +
2

N

(
AN−1 +

N − 1

2
(AN−1 − 1)

)
AN = 1 +

2

N

(
AN−1

N + 1

2
− N − 1

2

)
AN = 1 +

(
AN−1

N + 1

N
− N − 1

N

)
AN = AN−1

N + 1

N
+

1

N
AN
N + 1

=
AN−1
N

+
1

N(N + 1)

We can define BN = AN/(N + 1), then the equation becomes:

BN = BN−1 +
1

N(N + 1)

BN =
∑

1≤j≤N

1

j(j + 1)

This is a telescopic sum:

BN =
∑

1≤j≤N

1

j(j + 1)

BN =
∑

1≤j≤N

1

j
− 1

(j + 1)

BN =
1

1
− 1

N + 1

BN = 1− 1

N + 1

Substituting back:
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BN = 1− 1

N + 1
AN
N + 1

= 1− 1

N + 1

AN = N + 1− N + 1

N + 1

AN = N + 1− 1

AN = N

5.2 Exercise 1.15
Show that the average number of exchanges used during the first partitioning stage
(before the pointers cross) is (N − 2)/6. (Thus, by linearity of the recurrences, the
average number of exchanges used by quicksort is 1/6CN − 1/2AN .)

Solution
There are N ! different possible vectors of size N to be sorted. For any given k,

with 1 ≤ k ≤ N , there’s a 1/N probability that the first element will end up at the kth
position after sorting.

When the sorting is finished, the first k − 1 elements are smaller than the kth one,
and the N − k elements at the end are greater than the kth one. If j exchanges were
made, then there are j elements on the first group that were originally in the second
one, and vice versa. Therefore, the number of possible exchanges is

(
k−1
j

)(
N−k
j

)
.

Now we have to take order into account. Before the exchanges were made, the
elements in the first group could have been arranged into (k − 1)! orderings, and the
second group could have been in (N − k)! orderings.

Since there are a total of (N − 1)! possible orderings of the whole vector after the
first element, the probability of a vector with size N having the first element ending up
as the kth position after j exchanges is:

P (k, j) =
1

N

(
N − k
j

)(
k − 1

j

)
(N − k)!(k − 1)!

(N − 1)!

To get the desired expected value, we multiply by j and sum over all pairs k, j:

EN =
∑

1≤k≤N

∑
0≤j≤k−1

j
1

N

(
N − k
j

)(
k − 1

j

)
(N − k)!(k − 1)!

(N − 1)!

=
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!

∑
0≤j≤k−1

j

(
k − 1

j

)(
N − k
j

)
Let’s use the general absorption property of binomials, valid for all integers a:

46



a

(
b

a

)
= b

(
b− 1

a− 1

)
j

(
k − 1

j

)
= (k − 1)

(
k − 2

j − 1

)
We can also extend the domain on the second summation to all j, because the terms

will be zero outside the range 0 ≤ j ≤ k − 1:

EN =
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!

∑
0≤j≤k−1

j

(
k − 1

j

)(
N − k
j

)

=
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!

∑
j

(k − 1)

(
k − 2

j − 1

)(
N − k
j

)

=
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!
(k − 1)

∑
j

(
k − 2

j − 1

)(
N − k
j

)

Now we can use this version of Vandermonde’s convolution, valid when a, c, e are
integers and a ≥ 0:

∑
a

(
b

c+ a

)(
d

e+ a

)
=

(
b+ d

b− c+ e

)
∑
j

(
N − k
j

)(
k − 2

j − 1

)
=

(
N − 2

N − k − 1

)
Applying it to our equation:
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EN =
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!
(k − 1)

∑
j

(
k − 2

j − 1

)(
N − k
j

)

=
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!
(k − 1)

(
N − 2

N − k − 1

)

=
1

N

∑
1≤k≤N

(N − k)!(k − 1)!

(N − 1)!
(k − 1)

(N − 2)!

(N − k − 1)!(k − 1)!

=
1

N

∑
1≤k≤N

(k − 1)
(N − k)!

(N − k − 1)!

(N − 2)!

(N − 1)!

(k − 1)!

(k − 1)!

=
1

N

∑
1≤k≤N

(k − 1)(N − k)

(N − 1)

=
1

N(N − 1)

∑
1≤k≤N

−k2 + (1 +N)k −N

=
1

N(N − 1)

−
 ∑

1≤k≤N

k2

+ (1 +N)

 ∑
1≤k≤N

k

+

 ∑
1≤k≤N

N


=

1

N(N − 1)

(
−N(N + 1)(2N + 1)

6
+ (1 +N)

N(N + 1)

2
−N2

)
=

1

N(N − 1)

N3 − 3N2 + 2N

6

=
1

N(N − 1)

N(N − 1)(N − 2)

6N(N − 1)

=
N − 2

6

5.3 Exercise 1.16
If we change the first line in the quicksort implementation above to call insertion sort
when hi−lo ≤M then the total number of comparisons to sortN elements is described
by the recurrence

CN =


N + 1 +

1

N

∑
1≤j≤N

(Cj−1 + CN−j) N > M

1
4N(N − 1) N ≤M

Solve this recurrence.
Solution
Let’s massage the equation for N > M :
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CN = N + 1 +
1

N

∑
1≤j≤N

(Cj−1 + CN−j)

= N + 1 +
1

N

 ∑
1≤j≤N

Cj−1 +
∑

1≤j≤N

CN−j



We can introduce k = N − j, so j = N − k and change the limits on the second
summation:

CN = N + 1 +
1

N

 ∑
1≤j≤N

Cj−1 +
∑

1≤j≤N

CN−j


= N + 1 +

1

N

 ∑
0≤j<N

Cj +
∑

1≤N−k≤N

Ck


= N + 1 +

1

N

 ∑
0≤j<N

Cj +
∑

0≤k<N

Ck


= N + 1 +

2

N

∑
0≤j<N

Cj

Let’s find the equation for CN−1 and isolate the summation. Notice that we must
assume that N > M + 1 in order to ensure this equation work for CN−1.

CN−1 = (N − 1) + 1 +
2

N − 1

∑
0≤j<N−1

Cj

CN−1 = N +
2

N − 1

∑
0≤j<N−1

Cj

∑
0≤j<N−1

Cj =
N − 1

2
(CN−1 −N)

Substituting back in the original equation:
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CN = N + 1 +
2

N

∑
0≤j<N

Cj

CN = N + 1 +
2

N

(
CN−1 +

N − 1

2
(CN−1 −N)

)
CN = CN−1

N + 1

N
+ 2

CN
N + 1

=
CN−1
N

+
2

N + 1

Defining BN = CN

N+1 :

CN
N + 1

=
CN−1
N

+
2

N + 1

BN = BN−1 +
2

N + 1

BN = BM+1 +
∑

M+3≤k≤N+1

2

k

Remember this will only work for N > M + 1. We need to find BM+1 in order to
continue.

BM+1 =
1

M + 2

(M + 1) + 1 +
2

M + 1

∑
0≤j≤M

Cj


BM+1 =

M + 2

M + 2
+

2

(M + 1)(M + 2)

∑
0≤j≤M

j(j − 1)

4

BM+1 = 1 +
2

4(M + 1)(M + 2)

∑
0≤j≤M

j2 − j

BM+1 = 1 +
2

4(M + 1)(M + 2)

(
M(M + 1)(2M + 1)

6
− M(M + 1)

2

)
BM+1 = 1 +

1

2(M + 1)(M + 2)

(
M(M + 1)(2M − 2)

6

)
BM+1 = 1 +

M(M − 1)

6(M + 2)

We can get back to CN now:
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BN = BM+1 +
∑

M+3≤k≤N+1

2

k

BN = 1 +
M(M − 1)

6(M + 2)
+ 2

∑
M+3≤k≤N+1

1

k

CN
N + 1

= 1 +
M(M − 1)

6(M + 2)
+ 2 (HN+1 −HM+2)

So the final solution is:

CN =


(N + 1)

(
1 + M(M−1)

6(M+2) + 2(HN+1 −HM+2)
)

N > M + 1

M + 2 + M(M−1)
6 N = M + 1

1
4N(N − 1) N ≤M

5.4 Exercise 1.17
Ignoring small terms (those significantly less than N ) in the answer to the previous
exercise, find a function f(M) so that the number of comparisons is approximately
2N lnN + f(M)N . Plot the function f(M), and find the value of M that minimizes
the function.

Solution
Let’s use the following asymptotic for the harmonic number:

HN = lnN + γ +O(N−1)

HN ∼ lnN + γ

Let’s find CN−1:

CN−1 = N

(
1 +

M(M − 1)

6(M + 2)
+ 2(HN −HM+2)

)
∼ N

(
1 +

M(M − 1)

6(M + 2)
+ 2(lnN + γ − ln(M + 2)− γ)

)
∼ 2N lnN +N

(
1 +

M(M − 1)

6(M + 2)
− 2 ln(M + 2)

)

Therefore:

f(M) = 1 +
M(M − 1)

6(M + 2)
− 2 ln(M + 2)

Let’s find its derivative:
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f(M) = 1 +
M(M − 1)

6(M + 2)
− 2 ln(M + 2)

f ′(M) =
((M − 1) +M)(6(M + 2))− 6M(M(M − 1))

36(M + 2)2
− 2

M + 2

f ′(M) =
M2 + 4M − 2

6(M + 2)2
− 2

M + 2

f ′(M) =
M2 − 8M − 26

6(M + 2)2

The minimum for M happens when the derivative is zero:

M2 − 8M − 26

6(M + 2)2
= 0

M2 − 8M − 26 = 0

M =
8±

√
(−8)× (−8)− 4× (−26)

2

M = 4±
√

42

The positive root is 4 +
√

42 ∼ 10.48 so we’ll test the values for 10 and 11:

f(10) = −2.719813

f(11) = −2.719642

Therefore the best value for M is M = 10.
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